Agenda

- Who are we?
- Overview of End to End with CDISC
- What Types of Metadata will we talk about?
- What is the ODM and Define.xml?
- End to end uses of ODM and Define.xml
- Typical Clinical Data Transformations
- Metadata driven Extract, Transfer & Load
- Conclusions
Introduction to Formedix

Background

• Involved with CDISC Standards since 2000
• CDISC Software Products
 – Formedix Origin™ - first ODM and define.xml study design tools
 – Formedix Transform™ - EDC and paper integration products
 – Formedix Submit™ – data transformation engine
• Must Work with Existing Processes and Tools
• CDISC Consultancy Services
 – Planning, preparation and implementation
 – Cross trained in all the CDISC metadata & data models
 – Technical Director won 2 awards from ODM team
• Optimize Study Design & Downstream Data Conversions
What Types of Metadata will we talk about?

- **Database Standards**
 - CDISC Operational Data Model (ODM) – Metadata and Data

- **Submission Standards**
 - Define.xml/Case Report Tabulation Data Definition Specification
 - Study Data Tabulation Model – data in SAS transport files

- **Mapping Metadata**
 - Not a CDISC standard
 - Describes how to go from SDTM to Legacy Datasets
 - Describes how to go from SDTM to ODM
 - CDISC please help it become a standard!!!
What is the ODM?

Overview

• The ODM is a model that describes the content and structure of a CRF or database
• Two sections
 – Metadata – design of CRF or database
 – Data – transactional and snapshot
• ODM data is hierarchical and arranged around subjects
• Best Practice ODM Modelling
 – Balance data entry ease vs. downstream transformations
 – Get it wrong here – pay the price later!!
 – A lot of the metadata in the ODM ends up in the SDTM
 • Look at an annotated CRF
 • Category, position etc.
What is Define.xml?

Overview

- Based on the ODM model
- Not to be confused with Operational Data Model which describes the content and structure of a CRF/database
- Define.xml
 - Describes the content & structure of datasets
 - “Mash-up” of ODM with extensions
- SDTM datasets are arranged around findings, interventions and events NOT around subjects
- Define is for metadata
 - No corresponding data model in XML – SAS transport
 - Latterly HL7?
• Formal Specifications do not Exist for the Entire Study Set-up Process
• Raw Data ➔ Proprietary ➔ CDISC SDTM Datasets
• Downstream dataset design/specification not addressed at Study Set-up leading to a specification “gap”
• Study Specification
 – Dynamic Creation of Study Specifications
 • For all Roles
 • For all Systems
• Build
 – Automated build of EDC/CDMS
• Testing
 – “As specified” vs. “As built”
• Downstream
 – Replacement for datasets
 – Easiest way to get to SDTM
Define.xml
End to End Uses

• Study Set-up
 – Design of datasets
 – Establishment of libraries

• Study Execution
 – Automation of dataset conversions
 – Automation of Testing
 • As specified” vs. “As built”

• Submission
 – Lifecycles of define.xml
 – Define.xml for submission in eCTD
Typical Clinical Data Transformations

- 3/2 part & non-ISO 8601 date/time
- Numerically coded text values
- Text & Numeric result values
- Administrative/system variables
- Tables, Panels, Screens, Pages
- Non-standard variable names
- Horizontal data structures
- Repeating-group data structures

- 3/2 part & ISO 8601 date/time
- ISO 8601 date/time
- Decoded text values
- Text result values
- SDTM administrative variables
- SDTM domain & variable names
- Vertical data structures

April 3-5, 2006
Oncology Clinical Trials - Strategies to Accelerate Development and Decrease the Cost of Oncology Clinical Trials
CDISC Metadata Driven
Extract Transfer and Load (ETL) Process

• Define the Source (ODM or CRTDDS)
 – Raw data – use ODM metadata
 – Your Proprietary or Legacy datasets (CRTDDS)

• Define the Destination (CRTDDS)
 – Any destination dataset format is supported (your datasets/SDTM)
 – Destination dataset shell description held within CRTDDS
 – Enables multiple types and combinations of transformations
 • Raw Data ➔ Proprietary/Legacy ➔ SDTM today’s reality
 • Legacy ➔ SDTM legacy conversions
 • Raw Data ➔ SDTM ➔ Proprietary future vision
 • Raw Data ➔ SDTM future vision

• Have Your Cake and Eat It !!!
 • Working with existing “Inward Facing” and “Regulator Friendly CDISC”
CDISC Metadata Driven
Extract Transfer and Load (ETL) Process

• Define the Wiring/Mapping (Mapping Metadata)
 – Needed why? We have a wiring problem
 – Extended define.xml or XML language
 – Modelled from destination back to source
 – Destination data comes from
 • ODM, in-house datasets & SDTM data and metadata

• Automatic Data Transformations
 – Today manual raw data ➔ SDTM since no machine readable metadata
 – Metadata drives extract, transfer and load process = no manual coding
 – Engine uses ODM, define.xml, and ODM data

• Convert to proprietary ETL metadata to drive any ETL engine
Ultimate Flexibility
Study by Study Variability with No Coding

• Metadata controls all study to study variability
 – New define.xml and mapping metadata
 – Study to study effort minimized by library re-use

• Transform Engine remains static
 – Structural Transformations
 – One Source ➔ Multiple Destinations
 – Multiple Sources ➔ One Destination
 – Variable Level Transformations
 – Derivations (Function calls)
 – Hard-coded strings
 – Conditional mappings (If, Then, Else)
 – Decodes
 – Codelist mappings and more ….
End to End Clinical Trial Process
With Standards
Conclusions
CDISC Metadata Delivers

• Scalable end to end process
• Define.xml is very important throughout
 – Represent any type of tabular structure
• Populated ODM is better than datasets
• Multiple types of transformation possible
 – Dataset to Dataset
 – Operational Data to Proprietary Dataset to SDTM
 – Have your cake and eat it!
• Gaps still exist
 – Mapping metadata & define for data
Why ODM and Not Datastets?

- Hierarchical standardised and documented structure
- Easy to find all that you want – metadata and data
- Develop generic programs
 - Navigate the tree
 - Metadata driven – get this data from there in the metadata
- Easy to find data
 - Datasets have no relationships – artificially create
- Change SDTM version
 - Datasets approach need reprogramming
 - Metadata approach does not